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A uniform-mean-gradient shear flow was produced using a ten-layer closed-loop 
water channel, providing long enough dimensionless flow development times 
(7 = (x / i7)  (aU/az)) for the turbulence to grow. The rate of growth of the turbulence 
compares well with similar measurements in wind-tunnel-generated uniform shear 
flows for which the mean shears and centreline velocities are larger by an order of 
magnitude. Preliminary investigations were undertaken to study the growth of the 
turbulent intensity as functions of the mean shear, centreline velocity, and initial 
disturbance lengthscales. Initial disturbance lengthscales were varied by using grids 
of different mesh sizes. 

Turbulent intensities were found to increase nearly linearly with 7. Differences in 
grid mesh size produce different offsets in the turbulent intensity level, with a larger 
grid mesh producing a higher positive offset. This offset persists throughout the 
growth of the turbulent intensity. These observations provide valuable insight in 
interpreting previous wind-tunnel measurements, in particular the high-shear 
experiments of Karnik & Tavoularis (1983). Comparison with the theoretical 
predictions of Tavoularis ( 1985) allows for an improved universal characterization of 
evolving turbulence in a uniform mean shear. 

1. Introduction 
One of the most fundamental properties of turbulent flows is the coupling of the 

turbulence to the mean shear of the flow through the mechanism of turbulent energy 
production. The simplest flow in which to study interactions between the turbulence 
and the mean flow is homogeneous turbulence sustained by a constant mean shear, 
as first conceived by von KQrman (1937). Corrsin (1963) later suggested how this flow 
could be set up in the laboratory. Laboratory homogeneous shear flow was initially 
understood to be an idealization only in the sense that homogeneity strictly requires 
an infinite spatial field. However, more fundamentally, the experiments of 
Champagne, Harris & Corrsin (1970, hereinafter referred to as CHC) showed that 
even when the turbulent intensities and stresses are both effectively homogeneous, 
the turbulent integral lengthscale grows downstream. Subsequently, Harris, Graham 
& Corrsin (1977, hereinafter referred to as HGC) found that given sufficient flow 
development time, the turbulence intensities also increase monotonically down- 
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stream. Experimental evidence for the lack of vertical homogeneity was obtained 
by HGC and Tavoularis & Corrsin (1981, hereinafter referred to as TC) when they 
observed the Taylor microscale to increase in the direction of increasing mean 
velocity. 

The fact that  a perfectly homogeneous shear flow is in principle not realizable does 
not diminish the motivation for study laboratory flows which approximate ideal 
conditions. As pointed out by CHC, if one could avoid the complicating effects 
imposed by the proximity of the boundaries, a more natural relation between the 
turbulence and the mean velocity gradient could be studied. For most turbulent 
shear flows the size of the large eddies responsible for the bulk of the turbulent shear 
stress is of the same order as the scale of the mean-flow variation. For the laboratory 
studies of uniform-gradient shear flow, however, the lengthscales of the turbulence 
can be made small compared with the lengthscale over which the mean velocity 
gradient is constant (imposed by the facility size). These scales are thus able to  evolve 
more freely while interacting with an essentially uniform mean shear, thereby 
providing a test case for the verification of general turbulence theories and direct 
numerical simulations. 

Although much was learned from previous experiments on ‘nearly ’ homogeneous 
unstratified shear flow, they did not produce a satisfactory quantitative 
understanding of the downstream turbulent growth. Rose (1966), CHC and Mulhearn 
& Luxton (1975) found that the turbulent component kinetic energies and shear 
stress reach constant values while both the integral and Taylor lengthscales exhibit 
continuing growth. However, when HGC extended CHC’s measurements to  larger 
dimensionless downstream times 7 = ( x / o )  (i38/az), they found that the turbulence 
appeared to  reach an asymptotic state in which the turbulence intensities and 
integral scales grew monotonically while the Taylor microscale remained constant. 
They also offered theoretical arguments predicting an asymptotically linear increase 
of turbulent kinetic energy and found a plausible degree of linearity in their 
downstream growths, When TC measured the velocity in the same flow field with 
more reliable digital techniques, they found that the downstream growth of the three 
components of the turbulent kinetic energy was well represented by parabolic 
growth. Later, Tavoularis (1985) found that the same data could be fitted by a weak 
exponential growth in agreement with his semi-analytical prediction. The most 
recent wind-tunnel measurements by Karnik & Tavoularis (1  983, hereinafter 
referred to  as KT) for larger dimensionless development times 7 corroborate this 
exponential growth rate. It is evident that  further work is required to reconcile the 
different experimental results found for the growth of turbulence in a uniform mean 
shear. 

None of these earlier experiments were able to establish how the grfowth rate of the 
turbulence depends on the mean velocity gradient for a given mean centreline 
velocity. HGC and TC’s measurements were taken for the same mean shear and 
centreline velocity in the same wind tunnel. Although K T  were able to produce 
different values of the mean shear, i t  was a t  the expense of severely changing the 
centreline velocity. I n  all these wind-tunnel experiments the initial velocity of each 
layer was produced by a single commmon air supply. The shear was created by 
placing non-uniform resistances in each layer of the flow. This technique makes it 
very difficult to control the flow because the adjustment of the resistance in any one 
layer changes the input to the other layers. In  our facility each layer has its own 
separate pump and feeding system, so that we could, for the first time, begin to 
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isolate the effect of changing the mean shear while keeping the other parameters of 
the flow nearly constant. 

Another important phenomenon not sufficiently explored is whether or not 
different initial-lengthscale disturbances have any effect on the far-field-growing 
turbulence. Rose (1970) generated several different initial lengthscales by placing 
grids of different mesh sizes at the beginning of his test section, while keeping the 
mean shear nearly constant. Unfortunately, his measurements did not extend far 
enough in dimensionless time 7 to observe any growth of turbulence. This led Rose 
(1970) to the erroneous conclusion that the grid-imposed lengthscale determines a 
constant energy level for the turbulence. Although KT had both large 7-values and 
different grid mesh sizes they could not reproduce the same mean velocity field when 
the grid was changed. KT also did not interchange grids a t  the same position in their 
flow. The present facility allowed us to maintain nearly the same shear when the size 
of the initial disturbance lengthscale was changed and to have development times 
large enough to ensure turbulent growth. We were thus able to isolate the influence 
of the initial disturbance lengthscale on the downstream growth of the turbulence. 

2. Experimental facility and instrumentation 
2.1. Facility improvements 

The water channel used in the present experiments was designed for the study of 
stably stratified turbulent flows with uniform or sheared mean velocity profiles. The 
basic facility has been described in detail by Stillinger et al. (1983) and a general 
sketch of i t  is shown in figure 1 ( a ) .  Some important modifications were made to the 
original turbulence management section to improve the initial homogeneity of the 
mean flow and increase the mean shear. The new turbulence management section is 
shown in figure 1 ( b ) .  Here as in all the figures the downstream, vertical and cross- 
stream directions are designated as x , z  and y respectively. All ten layers are 
identical, nine of which are shown in figure 1 ( b )  with only the top layer drawn in full 
detail. The previous Stillinger et al. (1983) turbulence management section for a 
constant mean shear consisted of a screen (6 mm mesh) backed by 2.5 cm thick 
acoustic foam placed directly against the inlet splitter plates. No other screen-foam 
combination was used downstream to avoid destroying the velocity shear and the 
density gradient (when used). Detailed laser-Doppler-velocimeter measurements of 
the mean velocity field for sheared flows showed large-scale inhomogeneities in the 
form of jet-like structures near the sidewalls of the test section. In  addition, the 
design of the outlet of the test section, which requires the use of individual sluice 
gates to match the flow rate layer by laycr, causes enough pressure drop to raise the 
height of water in the test section from 25.4 cm to 30 cm for the largest shear. This 
abrupt jump in water level, which occurred at the end of the management section, 
was found to be responsible for high velocity fluctuations and a rapid downstream 
degradation of the mean shear. Such effects were found unacceptable and prompted 
a number of improvements. 

A smooth ten-layer diffuser 60 cm long was built of stainless-steel sheets 1.6 mm 
thick to expand the height of each layer from 2.54 to 3.05 em. The entrance to the 
diffuser was adjusted to match the inlet splitter plates so that each layer was isolated 
from the adjacent layers. Upstream of the diffuser each inlet layer was filled with a 
5 cm long coated aluminium honeycomb (6 mm hexagonal mesh) to break up the 
large-scale structures of the incoming flow. Each layer of the diffuser section had two 
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FIGURE 1. (a )  Perspective sketch of water-tunnel system. (b )  Perspective sketch of inlet 
(turbulent management) section. 

biplane grids (9 mm mesh) made of stainless-steel welding rods with diameter 1 mm 
located 5 and 50 cm downstream of the honeycomb. Several combinations of grids 
and screens with various mesh sizes and solidities were tested and the present 
configuration worked best in reducing mean-flow distortion and background 
turbulence. 

2.2. Downstream velocity development 

Figure 2 ( a )  shows the cross-stream (y-direction) variation of the mean velocity 
profiles a t  x / M  = 15 downstream from a biplane grid with mesh size M = 1.52 cm for 
various heights z. ( x / M  = 15 is equivalent to x / H  = 1.3, where H = 30.5 ern is the 
depth of the water in the channel.) The biplane grid, which provided mixing to smooth 
the initially step-shaped velocity profile, was located 3 cm from the end of the 
diffuser and was designed to match the 3.05 ern high layers of the diffuser. The five 
heights for the measurements of figure 2 ( a )  were taken a t  the middle of layers 
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FIGURE 2. (a )  Representative horizontal velocity profiles at x / H  = 1.3; 0, z = 10.7 cm; A, 13.7 
cm;  0, 16.8cm; *, 19.8 cm; 0 ,  22.9 cm. ( b )  Representative downstream evolution of the 
horizontal velocity profile at  z = 14 cm; A,  x / H  = 2.8; 0, 4.7; *, 6.6. Channel width is 40 cm, 
depth of water (H) is 30.5 cm. 

4-8. Typically, the measurements reported were taken at  a height of 15 ern from the 
bottom and a t  y = 20 cm (the centreline of the test section). Here, far from the 
boundary layers of the sidewalls, the cross-stream variation of the mean velocity was 
small and, as seen in figure 2 (b) ,  remained so further downstream. Figure 3 (a) shows 
an example of a typical mean vertical velocity profile for the shear experiments with 
an upstream grid of mesh size M = 1.52 em, and solidity CT = 31 %. The degradation 
of the velocity profile in figure 3 ( a )  is greater than that found in comparable wind- 
tunnel studies where, unlike the UCSD water channel, the walls could be adjusted to 
compensate for boundary-layer growth. In wind-tunnel experiments where no 
adjustment was made to compensate for boundary-layer growth (see Webster 1964), 
the initial linear velocity profile also decayed appreciably downstream. The amount 
of change of the mean velocity field necessary to balance the growth of the turbulence 
is very small. If, for example, we attribute all the downstream growth of 2 to the 
mean transport term l7(a8/ax), the change in the local mean velocity would only be 
about 1 YO. As seen in figure 3 (a) the central part of the vertical velocity gradient 
changes slowest and remains nearly linear. All measurements reported here are 
restricted to this region which remains larger than the evolving turbulent integral 
scale (1). 

The background root-mean-square velocity fluctuations measured at the inlet 
(without the grid) were less than 2% of the local mean velocity. No horizontal cross- 
stream (y) velocity fluctuation measurements were made. Vertical fluctuation 
measurements at the inlet were found to be not as homogeneous as some of the 
previous wind-tunnel experiments (e.g. CHC, HGC, and TC). Moreover, as can be 
seen in figure 3 ( b ) ,  a systematic trend away from homogeneity was often found in the 
present water-channel experiments. Turbulent fluctuations in the slower layers were 
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observed growing downstream a t  a faster rate. Although no mention of this unequal 
growth of turbulent fluctuations along the mean shear has appeared in the past 
literature (perhaps larger flow development times and the water channel's accelerated 
decay of the mean shear exaggerates this aspect of the flow) there are arguments 
presented herein ($6) which suggest such a possibility. Also included in figure 3 ( b )  are 
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wind-tunnel measurements of KT which extend to large 7-values and also exhibit 
along the mean shear increasing downstream inhomogeneity . Regardless of these 
differences, the downstream evolution of turbulent intensities and lengthscales 
observed in the water channel are in excellent agreement with previous wind-tunnel 
observations. 

2.3. Instrumentation 
Quartz-coated TSI X-films provided measurements of the downstream and vertical 
velocity components, while a Platinum Resistance Thermometer (PRT) measured 
the mean temperature variations required to compensate for overheat changes of the 
films. The hot films were standard TSI quartz-coated cylindrical sensors for use in 
water with a 50 pm diameter and a 1 mm sensing length. The mean temperature 
increase due to pump losses and viscous dissipation was about 1 "C/h and hot-film 
overheats varied from 13 to 10°C from the beginning to the end of an experiment. 
Even a t  low overheats dissolved gases in the water come out of solution forming 
bubbles on the hot films. This changes the heat transfer characteristics of the film, 
imparting a low-frequency drift to the data. Bubbles were swept away by periodically 
injecting a high-pressure stream of air from a nozzle below and behind the X-film, 
allowing about 15 s of uncontaminated data. Ten seconds of data were normally 
taken so that frequencies down to 0.1 Hz would be resolved. 

The X-film sensor was calibrated by towing the motor-driven instrumentation cart 
at a monotonically increasing speed through the still water of the test section. The 
towing speeds that were obtained from the variable-speed d.c. motor ranged from 10 
to 40 cm/s. The velocity of the cart was measured by differentiating its position with 
respect to time. Several tows were made before and after an experiment at yaw 
angles of 0' and & lo", a range adequate for the low-intensity turbulence produced. 
Enough time was allowed between tows for the water in the test section to come to 
rest. The modified King's law proposed by Castaldini, Helland & Malvestuto (1980) 
satisfactorily described the heat transfer law of the hot films: 

-- " - 4 + B ( : ) n ,  
T,-T 

where E,  is the bridge voltage, U ;  p and T are respectively the velocity, density and 
ambient temperature of the water, and T f  the film temperature. The exponent n 
varied between 0.25 and 0.30 for different films. Following the error analysis of 
Stillinger (1983), temperature contamination of the velocity components was found 
to be negligible. From (1) linearized voltages were computed as 

Assuming a 
dimensional 

cosine law appropriate for low-intensity 
least-squares fit was performed in terms 

turbulence, a first-order two- 
of the linearized voltages. 

3. Analytical and theoretical framework 
The corresponding theoretical problem is to determine the statistical state of an 

evolving uniform mean-shear flow, which is governed by the continuity and 
Navier-Stokes equations. Since the full Navier-Stokes equations are not presently 
mathematically tractable, the problem becomes one of acquiring correct insight from 
them without explicitly solving them. Therefore, some initial assumptions must be 
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judiciously chosen and experimentally appraised before any attempt is made a t  a 
semi-analytical solution. For wakes, jets, and mixing layers, the region of turbulent 
flow is extremely elongated in the main flow direction, and it is reasonable to simplify 
these equations by applying the boundary-layer approximations. No such approxi- 
mations are appropriate for the case of a uniform mean shear, as the turbulence 
is now distributed both vertically and horizontally throughout space. In  the past, 
different degrees of homogeneity have been assumed to simplify the equations. 

CHC began with the simplest possible assumption of rectilinear mean flow, i.e. 
0 = a(z, t ) ,  w = = 0, and the restriction to homogeneity for all averages except 0. 
With these assumptions CHC could then deduce greatly simplified equations for the 
mean flow and turbulent kinetic energy. Mean and fluctuating velocities in the 
downstream (x), vertical ( z )  and cross-stream (y) directions are represented, 
respectively, as 8, u, W, w, and Y ,  v. Mean and fluctuating pressures are similarly 
represented as P,  p. The simplified equations are 

- = 0 mean-continuity equation, (3) 
au 
ax 

(4) 
al.7 - = 0 mean-momentum equation, 
at 

a a 0  a - -(’a U j )  = uw---(Urn)  
at j a2 ax 

a 2  - - + V Q  (+Uj U j )  - v = 0 mean-kinetic-energy equation, 

(5  b )  
a 1-2 - a 0  au.au. 

ax ax,ax, 
t (a ) - -m-- v - 2  turbulent-kinetic-energy equation, 

where q2 = u2 + w2 + v2 and Einstein’s summation convention has been employed. For 
an incompressible Newtonian fluid, the total mean stress tensor expressed in indicia1 
notation is 

so that for steady flow the mean-kinetic-energy equation with CHC’s assumptions 
can be expressed as 

This is also the form of the mean-kinetic-energy equation for fully developed 
turbulent Couette flow (Tennekes & Lumley 1972). As seen from (7) a constant stress 
field does not, change the flow’s mean kinetic energy because the first term on the 
right-hand side of ( 7 ) ,  representing the transport of mean-flow energy by the stress, 
is exactly balanced by the deformation work T,,(aU/az). It is expected that the 
deformation work will decrease the energy of the mean flow unless this loss is 
balanced by an external input of energy. In  Couette flow this external energy input, 
is provided by the moving boundaries, but there is no such source of energy in the 
present case. On the contrary, as Hinze (1975) points out, the continuous generation 
of turbulence by the mean shear flow must decrease the mean velocity gradient, and 
in the process of satsifying continuity generates a compensating W-flow along the 
direction of the mean shear. The fact that theoretically the mean velocity gradient 
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cannot remain constant does not mean necessarily that i t  is an inappropriate 
approximation. 

When HGC extended the range of 7 and observed downstream growth of the 
turbulent fluctuations, CHC’s previous homogeneous assumptions had to be relaxed. 
The assumptions of HGC became 

steady rectilinear mean flow, 
p=j7=o0, 
ao/ay = 0, 
a8/az = constant, 
all turbulent moments are only transversely homogeneous 

(i .e.  a(-)/&) = a(-)/ay = 0). 

Equations (3)-(5) then become 

a 0  
ax 
- = 0 mean-continuity equation, 

a p  d ( 3 )  
= -P- ax dx ’ 

- 

ap d ( m )  
= -P- ax dx 

- mean-momentum equations, 

a 2  

a x 2  
+ v- ( lT)  -6 turbulent-kinetic-energy equation, 

- 
au, au, auk - 

where E = v- -+- - mean-turbulent kinetic-energy dissipation. 
axk{axk 

HGC’s assumptions (i-v) are shared by Tavoularis (1985), TC and KT. As shown by 
HGC, (9a ,  b)  without any further approximations determine that a (m) /ax  is a 
constant. This result, together with -- the compelling experimental evidence of HGC, 
TC and KT that uW/u‘w’ and uz /w2  (where ’ indicates r.m.s. value) are constant 
downstream in their asymptotic range, constrains 2 and 3 to a linear growth with 
x. Although HGC had observed approximate linearity in the downstream growth of 
all three component energies, their data contain considerable scatter. When TC 
repeated these same measurements no linear growth was observed even though the 
data exhibited much less scatter. With the additional measurements of KT and the 
present results ($4) it is clear that the growth of turbulent kinetic energy is not linear 
but a t  least quadratic and perhaps weakly exponential. 

Due to the discrepancy between the experimental results and HGC’s theoretical 
predictions a closer examination of their initial assumptions is required. The 
assumption that F = B = 0 together with continuity requires that ad/& = 0, thus 
prohibitinKenergy transfer from the mean flow field. The observed downstream 
growth of u2 must then be balanced by a pressure gradient in the x-direction, as seen 
in (9a). This is in marked contrast with the free shear flows of jets, wakes, and mixing 
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layers where it is assumed that @/ax = 0. CHC, HGC and TC had all adjusted their 
wind-tunnel walls to acount for boundary-layer growth. CHC and TC report an 
essentially constant mean pressure over the test section within experimental 
accuracy. Unfortunately, the equivalent pressure gradient that could balance the 
measured term -p(aG/ax) (cf. (9a)) is too small to be determined accurately. 

Another problem which follows from HGC's assumptions is that the resulting 
turbulent-kinetic-energy equation, (lo), is inconsistent since the left-hand side 
depends linearly on z through u(z) while the right-hand side is allowed no 
z-dependence whatsoever. Experimentally, both HGC and TC find that the turbulent 
and viscous transport terms are negligible (typically less than 3 %  of the mean 
convective term). Therefore the approximate form of (10) is simply 

which still remains unbalanced in its z-dependence. Tavoularis (1985) achieves a 
balance without violating prior assumptions by letting the dissipation rate e be a 
function of z as well as x. Both HGC and TC had observed that the Taylor microscale 
increases monotonically in the direction of increasing g(z) which implies that the 
dissipation rate decreases in the same direction. This leaves us in the awkward 
position of trying to imagine a pattern of motion which produces turbulence 
uniformly along the z-direction, but dissipates it at a slower rate along z with 
increasing 0. Tavoularis' assumptions, however, exclude such a possibility because 
the left-hand side of ( 1  1) can increase indefinitely with z while the maximum value 
of the right-hand side is bounded by --m(8l7/8z), which is assumed to be constant 
along z. 

The analysis of Tavoularis (1985), which predicts an exponential growth for the 
turbulent kinetic energy, is independent of the assumption that the dissipation but 
not the production term varies with distance along the mean shear direction (2). 

Starting with (11) and using the experimental evidence of CHC, HGC, TC and KT 
that F/P (where P = -m@O/tIz)) ,  aO/az, and the dimensionless Reynolds stress 
U W / ~  remain nearly constant with x in the asymptotic range, Tavoularis (1985) 
writes 

where the coefficient of 2 is not a function of x. Equation (12) then has the simple 
exnonential solution 

where Tavoularis defines 9: as a reference value of the turbulent kinetic energy a t  a 
location x = x, within the asymptotic region. Note that (13) can be obtained without 
making any assumptions on the dependence of a77/az, UW, 2, E and P on z. The 
measurements of KT, for values of r twice as large as those previously achieved, 
support Tavoularis' (1985) prediction €or an exponential growth of the turbulent 
kinetic energy. This exponential growth must be weak, however, since TC's data are 
fitted equally well with parabolic (see TC, figure 5 )  or with exponential curves (see 
Tavoularis 1985, figure 1). 

It can be shown that the necessary z-dependence of uw and possibly P / a x ,  needed 
to balance ( l l ) ,  can result from retaining the mean convective terms in the mean- 
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momentum equation. Assuming that the flow is steady, the viscous terms are 
negligible, and by symmetry V and a(-)/ay are both equal to zero, then the mean 
momentum equation for U reduces to 

Taking the derivative of this equation with respect to x, using continuity and 
assuming a2P/&ax is negligible, (14) reduces to 

Therefore the degradation of the mean velocity gradient will cause inhomogeneity 
along z in terms which appear in (1 1) and could conceivably allow for a balance of 
the z-dependence in that equation. 

I n  summary, we note that HGC and Tavoularis (1985) deduce quite different 
results while sharing identical assumptions. HGC deduced a linear growth of 2 with 
x from the mean-momentum equations while Tavoularis (1985) used the approximate 
turbulent-kinetic-energy equation (11) to deduce an exponential growth of 2 with x. 
Experiments have repeatedly shown (TC, KT) that the growth of? is not linear. This 
may imply that the unchanging-mean-flow-field assumption of HGC is inappropriate. 
Moreover by allowing the mean velocity gradient to decay (albeit slowly) a balance 
of the z-dependence in Tavoularis' (1985) approximate turbulent-kinetic-energy 
equation can be achieved. Establishing a firmer foundation for Tavoularis' theory is 
important since the predictions for this show best agreement with the experimental 
results. 

4. UCSD water-tunnel results 
Figure 4 (a )  shows the development of the longitudinal turbulent intensity ( u ' / o )  

with x / H  for different mean shears and mean centreline velocities but identical grid 
mesh, M = 1.52 cm. All measurements were taken on the centreline. H is equal to 
30.5 em, the depth of water in the channel, and x is the downstream distance 
measured from the grid. It is immediately apparent that when the mean centreline 
velocities are nearly the same (0, A), the turbulent intensities grow faster for the 
higher shear. Although this result may seem obvious, it is the first time that this 
effect has been demonstrated experimentally for the case of nearly constant 
centreline velocities. Also illustrated in figure 4 ( a )  (0, 0) is the effect of varying the 
centreline mean velocity while keeping the mean shear nearly constant. For the 
slightly higher-mean-shear data (0) the turbulence intensity is observed to increase 
spatially a t  a slower rate (in comparison to  0) presumably because the corresponding 
higher mean velocity allows less time for the turbulence to interact with the mean 
field. This is contrary to what was previously thought, as both KT and HGC 
expected that the mean velocity a t  the measurement location should not be a factor 
for determining the intensity and other statistics of the turbulence. Included in figure 
4 (a )  are the corresponding wind-tunnel measurements of TC. TC had incorporated a 
rod along the centreline of the exit plane of each of their twelve channels. Since the 
thickness of the rod was comparable with the thickness of the channel separator 
plate, TC's equivalent mesh size ( M )  is approximated to be 1.5 em. 

The turbulent intensities of figure 4 (a)  can be replotted versus the dimensionless 
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X aa 
u t!z 

T = --- 

FIGURE 4. Longitudinal turbulent intensity as a function of (a)  dimensionless downstream 
distance and ( b )  dimensionless development time. 

0 (cm s-l) a u p z  (s-1) M (cm) -7, ( b  only) 

0 20.1 1.23 1.52 4.66 
A 20.2 0.96 1.52 3.62 
0 26.4 1.29 1.52 3.72 * (TC) 1240 46.8 - 1.5 
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time T = ( x / l J )  (alJ/az). The choice of this variable can be physically rationalized as 
follows (in the light of Tavoularis’ work a more analytical development will be given 
in 96). If one assumes that to a first approximation the downstream rate of change 
of turbulent fluctuations scales with the mean shear, then, after integration, one 

W /  
- x C ~ ( T - T , , ) ,  77 

21’ 

U M C ~ ( T  - T, ) ,  (16c) 

where the ci are independent of x. The downstream influence of the initial- 
disturbance lengthscales can be attributed solely to the x, (or T,) term, which 
determines a constant offset value of the turbulent intensity that persists throughout 
its downstream development. r is the ratio of the flow convective timescale to the 
mean shear timescale and has appeared as a natural parameter in uniform-shear-flow 
studies (CHC; Mulhearn & Luxton 1975; HGC; TC). However, as will be seen from 
our experiments and the theoretical work of Tavoularis (1985), 7 now assumes a 
much more fundamental role in characterizing the development of uniform-mean- 
shear flows. 

Figure 4(b) demonstrates that u‘/U grows a t  nearly the same rate regardless 
of the shear or the mean centreline velocity when growth is measured in terms 
of the dimensionless time 7. The reason for the collapse of the triangle and square 
data in figure 4 ( a )  is because their values of (aT7/az)/U happen to be similar (A = 
0.048 emp1, 0 = 0.049 em-’), consequently x / H  is proportional to 7 = ( x / U )  (aU/az). 
The virtual origin x, estimated from figure 4 ( a )  is subtracted from x to guarantee 
that a t  T = 0, u’/U will also equal zero, Adjusting for the virtual origin x,, does not 
affect the growth rate of u’/B but provides an offset which facilitates comparison 
among different sets of data with identical inlet conditions. Also included in 
figure 4 ( b )  are TC’s data which, a t  least to a first approximation, have a similar 
dependence of u’/o on T .  This similarity is quite extraordinary considering that TC’s 
mean velocity gradient and centreline velocity were about forty and sixty times 
greater, respectively, than that of our water-tunnel data. However, both experiments 
were within the same range of dimensionless time 7. HGC felt that attaining larger 
effective flow development times by lowering the mean speed would be outweighed 
by the desire for larger Reynolds number. Because the kinematic viscosity of 
water is about fifteen times smaller than that of air OUT grid Reynolds number 
( l i ,M/v  x 3000) is about one quarter of TC’s, despite our much lower mean velocity. 
Our furthest downstream turbulent Reynolds number (u’hlv M 200) is about 20% 
greater than TC’s. 

As previously mentioned (§2.2), although our flow initially is not as homogeneous 
as TC’s, the major features of the developing flow become remarkably similar within 
a few T .  This observation is in agreement with Mulhearn & Luxton’s (1975) 
conclusion that except for the initial specified disturbance lengthscale, the turbulence 
structure is practically independent of all other initial conditions. No attempt was 
made here to  determine a virtual origin for TC’s data. 

Figure 5 ( a )  shows the corresponding measurements for the vertical turbulent 
intensity w’/U with the same virtual origin as used for u’/U. A different choice of 
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FIGURE 5.  Vertical turbulent intensity as a function of (a )  dimensionless downstream distance 
and (b )  dimensionless development time. Symbols as for figure 4. 

virtual origin for w’lB might give a better collapse for the data shown in figure 5 ( b ) .  
The ratio of the growth rates (slopes) of longitudinal and vertical turbulent 
intensities of figures 4(a) and 5 ( b )  are found to be about 1.53 for either shear, which 
is fairly close to the ratio of 1.7 obtained by TC. 

Rose (1970) investigated the effect of initial-disturbance lengthscales on the 
longitudinal turbulent intensity in the presence of a uniform mean shear. The initial 
disturbances were generated by grids of different mesh sizes but roughly equal 
solidity. In all his experiments both the centreline velocity and mean shear were kept 
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nearly constant. Rose concluded from his measurements : ‘ ... that  for a given value 
of mean shear the imposed length scale fixed in the energy level of the resulting 
turbulence, provided the scale is sufficiently large ’. It has since been found by HGC, 
TC and KT that, when measurements are extended to large enough 7, the turbulence 
level does not remain ?xed but monotonically increases. The present measurements 
can be used to determine how the initial lengthscale of the disturbance will affect the 
growth of turbulence a t  large development times. 

Near the inlet to the test section where 7 is small and the flow is grid dominated, 
the different turbulent-intensity data can be collapsed when they are plotted as a 
function of x / M .  Batchelor & Townsend (1948) observed similar behaviour for the 
decay of grid turbulence in a uniform mean flow. More surprising is the continued 
downstream influence of the initial disturbance on the developing turbulence. This 
is best illustrated in figure 6 by comparing the data (a, A) of similar mean velocity 
fields but different mesh size grids. 

In  figure 7 the previous values (figure 6)  of u’/U are plotted as a function of 7. The 
effect of the different centreline velocities and mean shears on the rate of growth of 
u’/g is then, a t  least to a first approximation, accounted for. It is evident in figure 
7 that increasing the initial-disturbance lengthscale results in an increasing offset in 
u‘/O which persists downstream. When Rose’s (1970, figure 6) data are plotted vs. 
7 the general behaviour is similar to the present data in the corresponding range 
of 7. As previously mentioned, Rose achieved only small values of 7(7 < 4); 
consequently he observed no downstream growth in the turbulence intensities. Also 
included in figures 6 and 7 are measurements taken for a case with no grid a t  the 
inlet. Mulhearn & Luxton’s (1975) results suggest that as the mean shear flow 
develops the details of the initial conditions become of minor importance apart from 
setting the initial scale of the disturbance. The initial scale characterizing the no-grid 
case will presumably be related to the height (3.05 em) of the individual layers of 
the diffuser, and as expected from this argument the no-grid data set lies between 
the data sets of the 1.52 and 3.81 cm mesh grids. Similar offsets are observed for the 
vertical turbulent intensity. 

These observations require that some previous conceptions be clarified. For 
example, KT stated that their observations confirm that ‘ ... the asymptotic turbulent 
structure depends on the shearing mechanism alone and that all initial-condition 
effects disappear downstream ’. Although in the asymptotic region the turbulence 
may change at  a rate independent of initial conditions, the absolute magnitude of the 
turbulent intensity is directly related to the magnitude of the initial disturbance. As 
long as the turbulence continues to interact with a constant mean shear, the data 
impIy that the magnitude of the turbulent fluctuations should scale with the initial 
disturbance imposed a t  the inlet. 

5. Comparison with wind-tunnel measurements 
The results in $4 suggest that a more universal representation of the turbulence 

intensities developing in a uniform mean shear can be achieved if they are expressed 
as functions of 7. A crucial test of this hypothesis is whether these results can be 
applied to past wind-tunnel studies. Fortunately, the composite normalized 
turbulent-kinet,ic-energy data of KT and TC provide a good test over a large range 
of mean shear and centreline velocities. The data of figure 8 ( a )  were taken from figure 
5 (a )  of KT and figure 5 of TC. The only difference between the replotted and original 
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data is that the coordinates in KT's figure 5 ( a )  were semi-logarithmic while the 
present axes are linear to better test the quality of the collapse of the data. 

KT's measurements were taken in a specially designed wind tunnel which was 
equipped with a shear generator that  separated the flow into twelve channels. A 
system of interchangeable screens stretched across each channel provided the desired 
channel pressure drop. The values of the mean shear used in figure 8 ( a )  were 43.5, 60 
and 84 s-l corresponding to centreline velocities of 6, 9 and 13 m s-l, respectively. No 
other flow parameters were changed. Because the channels share a common air 
supply the adjustment of one channel affects the others, so the shear in this case 
could not be changed without changing the centreline velocity in the same 
proportion. KT remark that it is interesting that, although the value of 0, should not 
be a factor for determining the asymptotic turbulence structure, shows almost 
universal values a t  any given downstream position when normalized with 0;. The 
results of the present experiments (figures 4 and 5) offer an explanation for these 
observations. The ratios (au/az)/o for the three turbulent-kinetic-energy curves of 
KT presented in figure 8 ( a )  are 7.25, 6.67 and 6.46 m-l, therefore KT's x-axis (x/H) 
is nearly proportional to 7 = (./a) (aU/az ) .  I n  the light of our results this fact could 
be responsible for KT's observation of almost universal g/oz values. If this 
reasoning is correct, then by replotting figure 8 ( a )  explicitly as a function of 7, a 
better collapse of KT's data should be achieved. Figure 8 ( b )  shows that an excellent 
collapse of the KT data is indeed obtained. It was checked whether this collapse 
would be adversely affected if the virtual-origin corrections were included. Replotting 
KT's data as (?)i/U us. x/H and extrapolating, a common virtual origin was found. 
When this common virtual origin (xo) is multiplied by the appropriate value of 
(au/az)/u for each curve and the resulting offset is included in figure S(b ) ,  very little 
effect is noted on the collapse of those data because x0 is found to be small (< 1 )  and 
( a U / a z ) / O  is almost the same for each curve. 

In  figure 8 ( a )  the data of KT a t  a centreline speed of 6 m s-l and a mean shear of 
43.5 s-l can be compared to  the data of TC a t  a centreline speed of 12.4 m s-l and a 
mean shear of 46.8s-'. As for the water-channel measurements (figure 4a) the 
turbulence is observed to grow faster for the smaller centreline velocity, given that 
the mean shear is about the same. One final comparison can be made. The 
measurements taken by KT a t  a centreline speed of 13 m s-l and a mean shear of 
84 s-l are shown by the squares in figure 8(a ) .  While 13 m s-l is very close to the 
centreline velocity of 12.4m s-l used by TC, TC's mean shear of 46.8 s-l is 
substantially smaller. Again, as anticipated from water-channel measurements, for 
almost equal centreline velocities the turbulent kinetic energies increase much faster 
downstream ( x / H )  for the larger shear. 

When plotted against r in figure 8 (6) the growth curves of KT and TC from figure 
8 (a )  collapse reasonably well, corroborating the results from the present water- 
channel experiments. No correction has been made for the different virtual origins of 
KT and TC though presumably an even better collapse of the measurements would 
result if this were done. It should be noted that when Tavoularis (1985, figure 1) 
plotted the log of these same data ?was non-dimensionalized with ?, which is quite 
different for the two experiments. However, the difference in slope found by 
Tavoularis between the TC and K T  data (which were taken in different facilities) 
cannot be accounted for by different 2. Discrepancy is exhibited in figure 8 ( b )  by the 
slightly different shapes of the TC and KT measurements. 
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6. Comparison with the asymptotic law of Tavoularis (1985) 
The previous success in collapsing turbulent-intensity measurements in uniform- 

mean-shear flows as a function of 7, suggests that a fundamental connection between 
7 and the governing equations should exist. Tavoularis (1985) proposed a semi- 
analytical analysis for such flows which predicts a weak exponential downstream 
growth of the turbulent kinetic energy. Tavoularis’ (1985) prediction is found to be 
in good agreement with the experimental results of KT. As previously discussed this 
prediction is shown to be independent of Tavoularis’ assumption that the dissipation 
but not the production term in the approximate turbulent-kinetic-energy equation 
(11) is dependent on z. Assuming (11) is a good approximation, as indicated by the 
measurements of HGC and TC, then it is only necessary that am/?, aO/az and e/P 
are independent of x. In  principle, as discussed by Hinze, this cannot be strictly true. 
For example aO/az must decay downstream, as it is the exclusive source for the 
downstream turbulent growth. However, the downstream variations of m/?, 0 and 
aO/az have been found experimentally to be small by HGC, TC, and KT. 

None of the previous wind-tunnel experiments have measured e directly, arguing 
instead that a better approximation can be arrived a t  by balancing the other two 
terms in (1 1). We estimated the dissipation from the one-dimensional spectrum using 
isotropic relations.? Figure 9 presents the e and P measurements corresponding to 
figure 4. It is seen that after the influence of the grid diminishes, the constant slopes 
of E and P as a function of x imply that the ratio of the production to the dissipation 
approaches a constant for large x. The asymptotic values of e / P  for the wind-tunnel 
data in figure 8 with nearly the same centreline velocity are listed by KT (their table 
1) as 0.71 for their high-shear case (H) and 0.57 for the low-shear case of TC. This 
observed dependence of e / P  on shear for nearly the same 0 is opposite to what one 
might expect. If with increasing mean shear e grows faster than P, by (11) the rate 
of growth of turbulence must decrease with increasing shear, clearly in contradiction 
to what is observed (figure 8a) .  More reasonable is the asymptotic ratio of e / P  for the 
water-channel data. In  figure 9 (for nearly the same 0) E/P is about 0.6 for the high 
shear and about 0.9 for the low shear. Although this decrease of e /P  with increasing 
shear and turbulence growth is also consistent with what HCG found after increasing 
the shear of CHC, CHC’s flow field had not yet reached an asymptotic state. It is also 
possible that ell’ is independent of mean shear but that neither the water nor the 
wind-tunnel measurements are accurate enough to determine this. 

Rearranging (13) Tavoularis’ exponential solution may be rewritten : 

where [(x,-x,)/U] (an/&) is 7, measured from some point x, at the beginning of the 
asymptotic range. Taking the square root of both sides of (17) and expanding the 
exponential : 

@); = (2); { 1 + 7, [ ( I - ;)] + 7; [ 7 (1 - :)J + . . .} . (18) 

t The isotropic relation E = v[lO(au/az)’+ 2 . 5 ( a ~ / a z ) ~ ]  has been used, where (i3u/az)2 and 
(aw/az)2 are calculated by integrating k2 times the one-dimensional energy spectra of E,,(k)_and 
E,,(k)respectively. TC had found for uniform-mean-shear flows that E x 8.5(q2/u’z) or since q2 x 
1.89 u ‘ ~ ,  E x 16.07 v(au/az)2. They also found that (aw/az)2 x 2.6(au/i3~)~ so that the isotropic 
relation for the dissipation can be rewritten as E x 16.5 v ( a u / a ~ ) ~ ,  which is close to TC’s estimate for 
the uniform mean shear case. 
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FIGURE 9. Turbulence production P (greater than zero) and negative dissipation E (less than zero) 
as a function of distance downstream. 

i7 (cm s-l) au/az (s-l) M (4 
0 20.1 1.23 1.52 
n 20.2 0.96 1.52 

The first two terms in the expansion are similar to the previous solution (16) ; higher 
terms then act as corrections to the original hypothesis. 

The term ( -TDB/? (1 -E/P)  has been tabulated by KT (their table 1) for a number 
of wind-tunnel experiments from different facilities and was found to be very 
small but not necessarily constant between experiments. In  particular for KT's 
measurements it was estimated to be about 0.046. The higher-order terms in the 
exponential expansion, especially for small rP, can often then be neglected. This is 
entirely consistent with the apparent linear growth of the turbulent intensities with 
small 7 (or the quadratic growth of ?/02 with r )  as presented in figures 4-8. When 
the turbulent intensities of figures 4 and 5 are plotted in semi-logarithmic coordinates 
us. x / H  a weak exponential growth may also be inferred. 

With identical inlet conditions K T  found nearly the same asymptotic centreline 
value of ( - m / p )  ( 1  - e /P)  regardless of the value of 0, or aU/az. The collapse of the 
water-channel turbulent-intensity data as a function of 7 for identical inlet conditions 
also suggests that ( -uw/?) ( 1  - ( e / P ) )  approaches a constant asymptotic value 
independent of the mean centreline velocity and the uniform mean shear. However, 
how ( - u ~ / p " )  (1 - (e /P))  changes from facility to facility is not understood. We have 
found that, in addition to the size of the entrance grid mesh, the distance between 
the grid and the inlet can also introduce an offset in the turbulent intensity vs. 7 
curve. As seen in figure 10 (note that 7 = 0 corresponds to the position of the grid) 
decreasing this distance results in a positive offset. This offset cannot be accounted 
for by including the different virtual origins. For this particular flow a 10 em 
separation distance between grid and inlet results in a very small change in T( x 0.1). 
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FIGURE 10. Measurements from different facilities and inlet configurations of the longitudinal 
turbulent intensity as a function of dimensionless development time. 
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height) 

When separation distances result in large changes in 7 the trends exhibited in figure 
10 may not continue ; a t  least this was found for the KT data where the equivalent 
change in r was x 2.8 and NN 3.4. 

In the asymptotic region of turbulent growth the slope of the turbulent intensity 
us. T curve seems more dependent on how quickly the mean velocity profile is 
decaying. In  our preliminary experiments we have found cases where the erosion of 
the mean velocity gradient was severe enough eventually to arrest turbulent growth. 
Figure 10 illustrates some of the different initial slopes of u'/u us. 7 associated with 
measurements taken from different facilities. Where the turbulence is growing the 
slopes of u'/a vs. 7 are found not to differ greatly. A need for further observations 
is necessary before a, clearer interpretation can be achieved. 
W h e r e a s  T, clearly exhibits a strong z-dependence, it is not known how 

(!7:)f [ - (m/& (1 - (e /P))]  depends on z. If the z-dependence of 7, prevails then (18) 
predicts for large T that (a"); should grow downstream unevenly along the mean shear 
flow, increasing faster with smaller values of o(z). Figure 3 (b)  shows such a trend for 
both the water-channel and TK measurements which are taken at the highest values 
of T to date. These trends were restricted to the central positon of the flow where 
the mean shear was nearly uniform. A possible mechanism for this vertical 
inhomogeneity is that turbulent structures, moving at a smaller mean velocity in the 
lower part of the flow, interact with the mean shear over a longer time than structure 
higher up moving a t  greater velocities. This observation, that the growth of u' is 
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dependent on a(z), is equivalent to that drawn from figure 4(a) (0, 0) but now, 
instead of changing the entire mean velocity field keeping aa/az constant, the 
measurement locations are simply moved along the direction of the mean shear. It 
is these measurements which are most persuasive since they were taken where the 
mean velocity profile was least affected by boundary-layer growth. Furthermore, as 
previously seen in figure 8 (a)  (0, *), similar wind-tunnel measurements are in 
agreement. In the central regions of the mean profiles where the mean strain 
remained uniform, the Reynolds shear stress exhibited similar trends, i.e. increasing 
with decreasing z. An increase in turbulent production in the direction of decreasing 
mean velocity is consistent with wind-tunnel observations (see TC ; Tavoularis 1985) 
of a corresponding increase in dissipation. 

These results imply that turbulence in uniform shear flows cannot remain 
homogeneous along the direction of the mean shear. Although previous wind-tunnel 
investigations (HGC ; TC) have found vertical inhomogeneity in the Taylor 
microscale similar inhomogeneities in u’ and uw have not been generally accepted. As 
previously mentioned, in comparison to wind-tunnel work, the inhomogeneities in 
the water channel are thought to be greater because of the quicker decay of the mean 
velocity profile. Nevertheless water-channel measurements predict that two series of 
downstream measurements of wind-tunnel velocity fluctuations, separated along the 
mean shear, will diverge owing to an increasing difference in 7. 

7. Downstream development of lengthscales and spectra 
Figure 11 compares the evolution of the characteristic lengthscales for uniform- 

gradient shear flows (designated by symbols) and unsheared grid-generated 
turbulence (designated by a solid line) experiments. Except for the TC wind-tunnel 
data, the data shown were taken in the UCSD water channel. 

The Kolmogorov scale, L, = ( v3 /c ) f ,  is a measure of the smallest turbulent 
lengthscales. If there is no source of turbulence, B must continually decrease and 
consequently L, will grow monotonically. As expected, for the uniform-mean- 
velocity case L, grows continually downstream as the turbulence decays (solid line). 
For the present shear experiments we find that a t  small xl, where the flow is grid 
dominated (x < 100) the turbulence initially decreases behind the grid and L, is 
consequently observed to increase initially downstream. Further downstream, 
however, where the flow is shear dominated (x > 100) L, monotonically decreases 
as the energy provided by the growing production term is first transferred to 
increasingly larger scales and subsequently to smaller scales. The downstream 
decrease in L, is corroborated by the horizontal and vertical velocity power spectra. 
In  figures 13 and 14 these spectra are found to include smaller scales with increasing 
downstream distance for data taken in the shear-dominated region of the flow. 
Presumably the larger the mean shear (and assuming all other parameters remain the 
same) the smaller L, should be, which is observed in figure 11. The L, measurements 
of TC are found to behave similarly to the present measurements. 

The Taylor microscale A is also shown in figure 11. A is inferred for the uniform- 
mean-flow case from the isotropic relation c = 10 $ / A 2 .  For the uniform-gradient 
shear flows A is inferred from the experimental relation B = 8.5 $ / A 2  (Tavoularis 
1985). Although A does not characterize any specific group of eddies, A-2 may be 
thought of as the mean-square wavenumber of sinusoidal velocity fluctuations 
weighted according to their contribution to the total energy (Batchelor & Townsend 
1948). For the case of uniform mean velocity (solid line), energy a t  all scales is 
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decaying, but because the smaller scales decay faster than large scales, the Taylor 
microscale grows monotonically. In  the uniform-shear case, close t o  the grid where 
the influence of the grid is large and the flow development time ( T )  is small, h is 
observed to increase initially, in agreement with the observations of CHC for small 
T .  The uniform-mean-flow values of L, and h are smaller than the corresponding 
shear values taken close to the grid because of the higher centreline values of the 
former (25 cm s-l as opposed to 20 cm s-l). For larger T ,  h is observed to remain 
nearly constant for both the water- and wind-tunnel uniform-gradient shear 
measurements. 

The integral lengthscale 1 is a measure of the largest scale of motion in the flow. 
TC found that the integral lengthscales computed from their spectra were not 
appreciably different from those computed from velocity correlations. The integral 
scales in figure 11 were all computed by extrapolating the one-dimensional energy 
spectra to zero frequency, but because of the limited record length of the water- 
channel measurements, this estimate could not be relied on for large x / M t  where the 
scales are too large to be spectrally resolved. As the integral scale grows, while 
the record time remains fixed, i t  becomes increasingly difficult to ascertain where the 
one-dimensional spectra are levelling off. The reasons for the growing integral scales 
of the sheared and unsheared flows of figure 11 are very different. The integral scale 
I is proportional to (l/G) limf+o Euu( f ) .  In  the unsheared flow I grows downstream 

t For the larger grid mesh size 1 is found initially to be sufficiently large that, owing to  the 
limited record length of water-channel measurements, reliable estimates were precluded even for 
small values of T .  
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because u2 decreases downstream faster than limf Euu( f ). In  the sheared flow, 
however, 2 grows downstream, therefore 1 increases owing to the faster growth of 
limf Euu( f ) .  This implies that  the absolute size of the largest eddies, as reflected by 
the spectra, are growing only in the shear-flow case. 

The similarity of the growth of the integral scale as a function of x between the 
three sets of data presented in figure 11 is somewhat surprising. Our experience with 
the corresponding turbulent intensities might suggest that the data should assume 
similar form only as a function of 7. The ratios of ao/az to 0 for the three 
experiments differ by as much as 60% (0.0377, *; 0.0475, A ;  and 0.0612 cm-’, 0) 
so that the same data plotted vs, 7 would result in three clearly distinct lines. HGC 
were similarly surprised when they compared their measurements to CHC’s and 
discovered that the two sets of integral-scale data seemed to be independent of the 
mean strain rate. In  their comparison, where the facility, inlet conditions and 
centreline velocity were identical, the mean shear of HGC was nearly four times that 
of CHC. A possible criticism of this comparison is that  the velocity field of CHC had 
not reached its asymptotic state. This objection does not necessarily preclude the 
possibility that the integral scales had reached their final state of growth, because not 
all the features of the turbulence are observed to evolve a t  the same rate. In  figure 
9 the production term appears to have settled into its asymptotic growth much 
sooner than the dissipation term. KT’s data were all taken in the asymptotic range 
and they also observed that the integral lengthscales developed independently of the 
values of the mean shear and centreline velocity. While it has been shown (figure 8 b )  
that KT’s velocity measurements collapse significantly better when plotted ws. 7, this 
is not found to  be true for the corresponding integral scales. As seen in figure 12, when 
the data of figure 11 are replotted in linear-linear coordinates, an equally good linear 
dependence is found, Included in figure 12 are integral scales of HGC and KT. It 
should be noted that the poor linear fit of the KT data shown in figure 12 is not 
improved when plotted in semi-logarithmic coordinates (see figure 7 a  of KT). 

If the larger eddies maintain their vorticity through interactions with the mean 
shear as Tennekes & Lumley (1972) suggest, then 

- 

WI a 0  _ -  - c3-. 
1 aZ 

If (16b) and (19) are both correct, 1 must grow independently of the mean shear and 
linearly with (x-x,), where x, is an offset dependent on the initial-disturbance 
lengthscale. Equation (19) is similar to the simple mixing-length type of 
proportionality proposed by Prandtl (1925) ; i.e. u’ = C, l ( a o / a z ) .  In  table 1 the 
proportionality constant C, is calculated for the integral lengthscales shown in figure 
11 and found to be roughly constant for experiments which all share similar initial- 
disturbance lengthscales. Although the phenomenological model of a mixing length 
(in analogy with the mean free path in the kinetic theory of gases) must be rejected, 
mixing-length expressions like (19) make good dimensional sense in situations where 
only one lengthscale and timescale are relevant (see Tennekes & Lumley 1972). 

Figures 13 and 14 show representative velocity spectra corresponding to the 
uniform-mean-sheared water-channel data of figures 4 and 5. Beyond the grid- 
influenced region ( x / M  > 80) both the longitudinal (figure 13) and vertical (figure 14) 
one-dimensional velocity spectra monotonically increase a t  all frequencies with 
increasing downstream location. 

Figures 15 and 16 illustrate how well these one-dimensional longitudinal velocity 
spectra tend to collapse to a single universal curve when normalized by the 
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FIGURE 12. Downstream development of integral length scales (H x 30.5 cm for all experiments). 

U (cm 8-l) 

0 20.1 
20.2 2 TC 1240.0 

V HGC 1240.0 
600.0 

A KT 900.0 
1300.0 

.I 
d 

au/az  (5-1) M (em) 
1.23 1.52 
0.96 1.52 

46.8 N 1.5 
46.8 - 1.5 

60.0 - 2.54 (layer height) 
85.0J 

43.51 

5 - 
H 

TC (*) (their table 4) 

HGC (their table 3) 11 

7.5 
9.5 

11 

Water channel (0) 2.5 
3 
3.5 
4 
5 
6 
6.5 
7 

6.5 
Water channel (A) 4 

ar7 
az 1- 

(m s-l) 

2.06 
2.39 
2.67 

2.54 

0.0295 
0.0337 
0.0408 
0.0408 
0.0434 
0.0428 
0.0566 
0.0566 
0.0303 
0.0405 

U )  

(m s-l) 

0.529 
0.616 
0.689 
0.641 

0.0084 
0.0096 
0.01056 
0.01133 
0.01328 
0.0 1442 
0.01637 
0.0 1602 
0.00842 
0.0179 

3.891 
3.87 3.88f0.01 
3.881 

3.97 

3.26 
3.31 
3.46 
3.53 

3.53} 3.61f0.11 
3.69 

TABLE 1. Comparison of Prandtl's mixing-length proportionality constant, 1/C, = l(au/az)/u',  for 
different experiments. Symbols correspond to figure 11. 
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FIGURE 13. One-dimensional spectra of the longitudinal turbulent velocity. 
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FIGURE 15. Normalized one-dimensional turbulent longitudinal velocity spectra. 0-0, 
Stewart & Moilliet (1962); 0,  TC; A, Helland, Lii & Rosenblatt (1977). 

Grant, 

Kolmogorov scales. For the present data there has been no attempt to correct the 
higher frequencies for the finite sensor length. Included also in figures 15 and 16, for 
the sake of comparison, are the normalized velocity spectra from some very different 
turbulent flows. The agreement among the spectra is reasonably good as required by 
Kolmogorov universal similarity, but some deviations do exist because of the finite 
sensor length. 

The data represented by the solid circles in figure 15 were derived from the 
Tavoularis & Corrsin (TC, figure 16) uniform-shear spectrum. These data, taken a t  
z /h  = 10.5, were normalized by the appropriate e- and v-values listed in table 4 of 
TC. The spectra were then divided by two because of the different definitions of E,, 
(kl), i.e. for the present water-channel data 

- 
while TC use J:E,,(k,) dk, = u2. 

TC's measurements were taken in a wind tunnel with a mean velocity gradient of 
46.8 s-l and centreline velocity of 1240 cm s-'. The turbulent Reynolds number 
(u'h/v) was 160. The square symbols in figure 15 are taken from figure 6.2 of Phillips 
(1966), which is simply a composite of the Kolmogorov-scaled spectra appearing in 
the original paper by Grant, Stewart & Moilliet (1962, figures 12 and 13). These 
spectral values were also divided by two in order to achieve consistent definitions 
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10-3 10-2 10-1 1 00 
k L k  

FIGURE 16. Normalized one-dimensional turbulent vertical velocity spectra. A, Helland, Lii & 
Rosenblatt (1977). 

of Euu(k l ) .  The higher-wavenumber part of this spectrum is deleted because of 
instrumentation noise problems (see Grant et al. 1962). The Reynolds number of the 
oceanic measurements based on the mean flow and depth of the tidal channel is 
around lo8. The data denoted by triangles in figures 15 and 16 represent 
measurements of decaying grid turbulence taken in a wind tunnel by Helland, Lii & 
Rosenblatt (1977), where the grid Reynolds number (OM/u)  is about 26000 while the 
turbulent Reynolds number (u ’A/v)  is around 35. A line of slope-$ is also included to 
show how the developing spectra approach the inertial subrange. 

The lined data (solid, dashed, etc.) in figures 15 and 16 are the corresponding 
spectra of figures 13 and 14 when normalized by the appropriate Kolmogorov length- 
and velocity scales. The  grid Reynolds number is 3000 whereas the turbulent 
Reynolds number ranges from about 100 to 200, increasing downstream with u’, 
while A remains nearly constant (see figure 11) .  The tendency for the water-channel 
shear spectra to approach the universal equilibrium spectrum with increasing r (or 
II: since T = ( I I : / ~ )  (aO/az)) is apparent. It may be a t  first surprising that in figure 15 
the Kolmogorov-scaled shear spectra with a smaller mean-flow Reynolds number 
( o N / v )  than the similarly scaled grid data (a), exhibit a significantly greater 
portion of the universal spectrum ; however, the turbulent Reynolds number (u’h/v) 
of the former was much larger than the latter. 
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8. Implications of r in interpreting other shear-flow phenomena 
If 7 is accepted as a fundamental parameter of uniform-mean-shear flows, a 

simpler interpretation of some other past experimental results can be obtained. As 
a first example, consider KT’s attempt to establish an experimental stability 
criterion for uniformly shear flows using Hasen’s (1967) stability analysis. Hasen’s 
analysis, which considers finite two-dimensional eddy fluctuations in viscous 
incompressible flows, predicts that there exists a stability barrier for the initial 
amplitude of the eddy fluctuations that can be expressed as 

where L is the lengthscale of the initial eddies. If the initial amplitude of the eddy 
fluctuations is less than ub then the fluctuations decay as r + co and if they are larger 
the energy of the fluctuations does not decay. KT computes [(1/L) (a77/az)]i$ for 
flows where q2 is observed to grow (TC ; KT) and for those where only reaches a 
constant value (CHC; Rose 1966, 1970; Mulhearn & Luxton 1975; KT). They find 
that is observed to grow only when [(1/L) ( a n / a z ~ ] ~ u f  2 4.5 mm s-l and reaches a 
constant asymptotic state for 3 < [ ( I / L )  (ao/az)f vs < 4.5 mm s-1. 

There are several difficulties with Hasen’s and KT’s use of [(1/L) ( a O / a z ) ] ~ u ~  
as a criterion for stability: when it is calculated for the present water-channel 
measurements, where the downstream growth of? is unmistakable, it is found to be 
an order-of-magnitude smaller than KT’s stability barrier of 4.5 mm s-l. Also 
for both Rose’s (1970) and the present measurements there is no sign of promoting 
the decay of turbulence by increasing the initial-disturbance lengthscale as KT have 
found and (20) suggests. Finally, in all the measurements that KT compared, the 
integral scales were always observed to grow regardless of their ub value. CHC were 
the first to recognize that in the presence of a constant mean velocity gradient, 
growing integral scales should lead to a growth in the turbulent kinetic energy. They 
suggested that a growth in p might have been observed in their own data if it  were 
not for the small flow development times. HGC confirmed CHC’s insight by 
observing a growth in ;r“ a t  larger dimensionless development times 7(r > 4). 
Although HGC increased 7 by increasing aU/az, it has been shown in the previous 
sections that 7 can also be increased by decreasing 77 or increasing x. These later 
methods would provide larger r-values without changing ub. 

The development of? in a turbulent uniform mean shear can be explained much 
more simply in terms of r.  Whether ? is constant, decaying or growing becomes a 
question of whether there is enough dimensionless time for fluctuations to grow 
above the background noise, rather than a question of stability. In all the uniform- 
mean-shear flows that have been investigated, the turbulent kinetic energy always 
decreases immediately behind the grid. Near the inlet the fluid has not had enough 
time to react to the mean shear. Therefore as long as the production term is small 
compared with the dissipation rate, the flow is mostly characteristic of a decaying 
grid turbulence. If measurements were restricted to these small values of 7, they 
would erroneously suggest that the turbulence should continue to decrease 
downstream. Similarly, the fact that p was observed to approach a constant value 
at some location does not necessarily imply that it will remain constant a t  further 
downstream positions. The region where is a constant occurs when the shear 
production just compensates for the loss of turbulent kinetic energy of the initial grid 
decay. The exact value of r where this balance occurs will presumably depend on the 

2-2 
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FIQURE 17. (a) Longitudinal (0 )  and vertical (0) turbulent intensity as a function of dimensionless 
downstream distance ; from TC. ( b )  Longitudinal turbulent intensity as a function of dimensionless 
time. 

U (cm s-l) aulaz (8-1) M (cm) -7, 

0 Champagne, Harris 1240 12.9 - 1.5 1.46 

* TC 1240 46.8 - 1.5 5.29 
& Corrsin (1970) 

inlet configuration and the background noise of the facility. In  general it is found 
(CHC; Rose 1966, 1970; Mulhearn & Luxton 1975), that for values of r less than four 
there is insufficient development time for to grow. As seen in figures 7 ,  10 and 
17 (b ) ,  for larger T both wind-tunnel and water-channel measurements exhibit 
turbulent growth between 7 = 4 and 5. Only when 7 is calculated from the 
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measurements of KT taken behind grids separated from the inlet by relatively large 
values of 7 is this behaviour not observed. 

As seen in figure 17b) when the turbulent intensities of CHC and TC, after 
correcting for the virtual origin, are plotted us. r their evolutions appear to merge. 
The virtual origin was estimated from the intersection of the growing d / O  and 
w'/B data of TC (see figure 17a). It is reasonable to assume approximately the same 
virtual origin for the CHC measurements since the facility was the same and the 
inlets similar. TC's replacement of CHC's 0.318 cm square rods a t  the inlet with 
0.508 cm round rods is almost accounted for (within 15 %) by the associated decrease 
in drag coefficient. 

As a last example consider the heat-flux measurements of Sreenivasan, Tavoularis 
& Corrsin (1982) obtained in a uniform mean shear to test gradient transport theory. 
STC reported that the turbulent transport -& is, for some unknown reason, more 
efficient when aU/az > 0 than when aO/az < 0. In  both cases, aU/az had the same 
absolute magnitude and the temperature gradient induced negligible buoyancy 
effects on the flow. The effect of the sign of aUl3.z on the temperature flux may be 
sought in the governing equations. The mean velocity gradient, however, appears 
neither in the temperature flux nor in the mean-square temperature-fluctuation 
equations. It appears only in the equation for the turbulent kinetic energy as 
uw(ao/az) .  However, since the net effect of uw(aU/az) is to decrease the mean kinetic 
energy of the flow, the sign of must compensate for the sign of aO/az so that their 
product is always negative. 

A possible explanation may be found if the relative values of 7 for the two cases 
are compared. The measurements were taken a t  the same x-position and since the 
sign of 7 is of no consequence, only the mean velocity and hence the convective time 
x/B may be different. From figure 2 of Sreenivasan et al. (1982), it is apparent that 
where the measurements were taken, the mean velocity for the i3Ula.z > 0 data was 
less than the mean velocity for the ao/az < 0 data, and therefore r was higher when 
8% > 0. As suggested by the present results, the large values of 7 are consistent 
with a higher value of -& and hence a greater mixing rate. 

- 

9. Conclusions 
The present study provides a clearer experimental understanding and simple 

global expression for the growth of turbulence in a uniform mean shear, for which 
there has previously been little agreement in the literature. The experiments 
reported here were conducted in a facility that is unique in that the effects of 
changing the magnitude of the mean shear on the turbulent growth could be isolated. 
Furthermore, for the first time, the influence of initial lengthscale disturbances on 
the far-downstream-growing turbulence was investigated. The turbulence intensity 
growth for the range of 7 investigated (r = 5-25) can be summarized by the following 
simple relations (16a, b ) :  

W /  
- O = C2(7-To), 

where x, is a function of the size of the initial disturbance and C, and C, are 
independent of x but may depend on the facility. Wind-tunnel measurements are 
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characterized equally well by (16) for 7 in the same range as the present water-tunnel 
data. 

If to a first approximation the characteristic time of the eddies (l/w’) is 
proportional to the characteristic time of the mean flow (aU/az)-l, as Tennekes & 
Lumley (1972) suggest, then (16) predicts that I must initially grow linearly with 
downstream distance, independent of the mean shear. Both wind-tunnel and water- 
channel measurements are in fairly good agreement with this prediction. 

Equation (16) is an excellent approximation to the Tavoularis (1985) semi- 
analytical prediction for the growth of turbulence for moderate 7. This prediction 
was shown to be independent of his assumptions that and uw(aU/az) are constant 
with z. Finally, this study raises the question of whether, even in an ideal uniform 
mean shear, some developing inhomogeneity along the mean shear should be 
expected, 
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